Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
Add more filters










Publication year range
1.
Br J Pharmacol ; 2023 Apr 19.
Article in English | MEDLINE | ID: mdl-37076128

ABSTRACT

Epilepsy is one of the most serious and common chronic neurological conditions, characterised by recurrent hypersynchronous electrical activity in the brain that lead to seizures. Despite over 50 million people being affected worldwide, only ~70% of people with epilepsy have their seizures successfully controlled with current pharmacotherapy, and many experience significant psychiatric and physical comorbidities. Adenosine, a ubiquitous purine metabolite, is a potent endogenous anti-epileptic substance that can abolish seizure activity via the adenosine A1 G protein-coupled receptor. Activation of A1 receptors decreases seizure activity in animal models, including models of drug-resistant epilepsy. Recent advances have increased our understanding of epilepsy comorbidities, highlighting the potential for adenosine receptors to modulate epilepsy-associated comorbidities, including cardiovascular dysfunction, sleep and cognition. This review provides an accessible resource of the current advances in understanding the adenosine system as a therapeutic target for epilepsy and epilepsy-associated comorbidities.

2.
Am J Respir Cell Mol Biol ; 69(2): 182-196, 2023 08.
Article in English | MEDLINE | ID: mdl-37098022

ABSTRACT

Asthma is a heterogeneous chronic airway disease with an unmet need for improved therapeutics in uncontrolled severe disease. The calcium-sensing receptor (CaSR) is a G protein-coupled receptor upregulated in asthma. The CaSR agonist, spermine, is also increased in asthmatic airways and contributes to bronchoconstriction. CaSR negative allosteric modulators (NAMs) oppose chronic airway inflammation, remodeling, and hyperresponsiveness in murine and guinea pig asthma models, but whether CaSR NAMs are effective acute bronchodilators compared with standard of care has not yet been established. Furthermore, the ability of different classes of NAMs to inhibit spermine-induced CaSR signaling or methacholine (MCh)-induced airway contraction has not been quantified. Here, we show CaSR NAMs differentially inhibit spermine-induced intracellular calcium mobilization and inositol monophosphate accumulation in HEK293 cells stably expressing the CaSR. NAMs reverse MCh-mediated airway contraction in mouse precision-cut lung slices with similar maximal relaxation compared with the standard treatment, salbutamol. Of note, the bronchodilator effects of CaSR NAMs are maintained under conditions of ß2-adrenergic receptor desensitization when salbutamol efficacy is abolished. Furthermore, overnight treatment with some, but not all, CaSR NAMs prevents MCh-mediated bronchoconstriction. These findings further support the CaSR as a putative drug target and NAMs as alternative or adjunct bronchodilators in asthma.


Subject(s)
Asthma , Bronchodilator Agents , Mice , Humans , Animals , Guinea Pigs , Bronchodilator Agents/pharmacology , Receptors, Calcium-Sensing/agonists , Receptors, Calcium-Sensing/metabolism , HEK293 Cells , Spermine/therapeutic use , Asthma/drug therapy , Asthma/metabolism , Albuterol/pharmacology , Methacholine Chloride/pharmacology
4.
Mol Pharmacol ; 103(6): 325-338, 2023 06.
Article in English | MEDLINE | ID: mdl-36921922

ABSTRACT

Allosteric modulation of metabotropic glutamate receptor subtype 1 (mGlu1) represents a viable therapeutic target for treating numerous central nervous system disorders. Although multiple chemically distinct mGlu1 positive (PAMs) and negative (NAMs) allosteric modulators have been identified, drug discovery paradigms have not included rigorous pharmacological analysis. In the present study, we hypothesized that existing mGlu1 allosteric modulators possess unappreciated probe-dependent or biased pharmacology. Using human embryonic kidney 293 (HEK293A) cells stably expressing human mGlu1, we screened mGlu1 PAMs and NAMs from divergent chemical scaffolds for modulation of different mGlu1 orthosteric agonists in intracellular calcium (iCa2+) mobilization and inositol monophosphate (IP1) accumulation assays. Operational models of agonism and allosterism were used to derive estimates for important pharmacological parameters such as affinity, efficacy, and cooperativity. Modulation of glutamate and quisqualate-mediated iCa2+ mobilization revealed probe dependence at the level of affinity and cooperativity for both mGlu1 PAMs and NAMs. We also identified the previously described mGlu5 selective NAM PF-06462894 as an mGlu1 NAM with a different pharmacological profile from other NAMs. Differential profiles were also observed when comparing ligand pharmacology between iCa2+ mobilization and IP1 accumulation. The PAMs Ro67-4853 and CPPHA displayed apparent negative cooperativity for modulation of quisqualate affinity, and the NAMs CPCCOEt and PF-06462894 had a marked reduction in cooperativity with quisqualate in IP1 accumulation and upon extended incubation in iCa2+ mobilization assays. These data highlight the importance of rigorous assessment of mGlu1 modulator pharmacology to inform future drug discovery programs for mGlu1 allosteric modulators. SIGNIFICANCE STATEMENT: Metabotropic glutamate receptor subtype 1 (mGlu1) positive and negative allosteric modulators have therapeutic potential in multiple central nervous system disorders. We show that chemically distinct modulators display differential pharmacology with different orthosteric ligands and across divergent signaling pathways at human mGlu1. Such complexities in allosteric ligand pharmacology should be considered in future mGlu1 allosteric drug discovery programs.


Subject(s)
Glutamic Acid , Receptor, Metabotropic Glutamate 5 , Humans , Receptor, Metabotropic Glutamate 5/metabolism , Ligands , Allosteric Regulation , Quisqualic Acid , Glutamic Acid/metabolism
6.
J Bone Miner Res ; 37(9): 1787-1807, 2022 09.
Article in English | MEDLINE | ID: mdl-35848051

ABSTRACT

The calcium-sensing receptor is a homodimeric class C G protein-coupled receptor (GPCR) that senses extracellular Ca2+ (Ca2+ o ) via a dimeric extracellular Venus flytrap (VFT) unit that activates G protein-dependent signaling via twin Cysteine-rich domains linked to transmembrane heptahelical (HH) bundles. It plays a key role in the regulation of human calcium and thus mineral metabolism. However, the nature of interactions between VFT units and HH bundles, and the impacts of heterozygous or homozygous inactivating mutations, which have implications for disorders of calcium metabolism are not yet clearly defined. Herein we generated CaSR-GABAB1 and CaSR-GABAB2 chimeras subject to GABAB -dependent endoplasmic reticulum sorting to traffic mutant heterodimers to the cell surface. Transfected HEK-293 cells were assessed for Ca2+ o -stimulated Ca2+ i mobilization using mutations in either the VFT domains and/or HH bundle intraloop-2 or intraloop-3. When the same mutation was present in both VFT domains of receptor dimers, analogous to homozygous neonatal severe hyperparathyroidism (NSHPT), receptor function was markedly impaired. Mutant heterodimers containing one wild-type (WT) and one mutant VFT domain, however, corresponding to heterozygous familial hypocalciuric hypercalcemia type-1 (FHH-1), supported maximal signaling with reduced Ca2+ o potency. Thus two WT VFT domains were required for normal Ca2+ o potency and there was a pronounced gene-dosage effect. In contrast, a single WT HH bundle was insufficient for maximal signaling and there was no functional difference between heterodimers in which the mutation was present in one or both intraloops; ie, no gene-dosage effect. Finally, we observed that the Ca2+ o -stimulated CaSR operated exclusively via signaling in-trans and not via combined in-trans and in-cis signaling. We consider how receptor asymmetry may support the underlying mechanisms. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Subject(s)
Hypercalcemia , Hyperparathyroidism, Primary , Calcium/metabolism , Gene Dosage , HEK293 Cells , Humans , Hypercalcemia/genetics , Infant, Newborn , Mutation/genetics , Receptors, Calcium-Sensing/genetics , Receptors, Calcium-Sensing/metabolism , gamma-Aminobutyric Acid/genetics
7.
Purinergic Signal ; 18(3): 359-381, 2022 09.
Article in English | MEDLINE | ID: mdl-35870032

ABSTRACT

Alzheimer's disease (AD) is the most common dementia in the elderly and its increasing prevalence presents treatment challenges. Despite a better understanding of the disease, the current mainstay of treatment cannot modify pathogenesis or effectively address the associated cognitive and memory deficits. Emerging evidence suggests adenosine G protein-coupled receptors (GPCRs) are promising therapeutic targets for Alzheimer's disease. The adenosine A1 and A2A receptors are expressed in the human brain and have a proposed involvement in the pathogenesis of dementia. Targeting these receptors preclinically can mitigate pathogenic ß-amyloid and tau neurotoxicity whilst improving cognition and memory. In this review, we provide an accessible summary of the literature on Alzheimer's disease and the therapeutic potential of A1 and A2A receptors. Although there are no available medicines targeting these receptors approved for treating dementia, we provide insights into some novel strategies, including allosterism and the targeting of oligomers, which may increase drug discovery success and enhance the therapeutic response.


Subject(s)
Alzheimer Disease , Adenosine/metabolism , Aged , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Brain/metabolism , Humans , Receptors, Purinergic P1/metabolism
9.
ACS Pharmacol Transl Sci ; 5(3): 183-188, 2022 Mar 11.
Article in English | MEDLINE | ID: mdl-35311018

ABSTRACT

Schizophrenia is a complex and severe mental illness. Current treatments for schizophrenia typically modulate dopaminergic neurotransmission by D2-receptor blockade. While reducing positive symptoms of schizophrenia, current antipsychotic drugs have little clinical effect on negative symptoms and cognitive impairments. For the last few decades, discovery efforts have sought nondopaminergic compounds with the aim to effectively treat the broad symptoms of schizophrenia. In this viewpoint, we provide an overview on trace-amine associated receptor-1 (TAAR1), which presents a clinically validated nondopaminergic target for treating schizophrenia and related disorders, with significantly less overall side-effect burden. TAAR1 agonists may also be specifically beneficial for the substance abuse comorbidity and metabolic syndrome that is often present in patients with schizophrenia.

10.
Nat Commun ; 13(1): 92, 2022 01 10.
Article in English | MEDLINE | ID: mdl-35013280

ABSTRACT

The glucagon-like peptide-1 receptor (GLP-1R) has broad physiological roles and is a validated target for treatment of metabolic disorders. Despite recent advances in GLP-1R structure elucidation, detailed mechanistic understanding of how different peptides generate profound differences in G protein-mediated signalling is still lacking. Here we combine cryo-electron microscopy, molecular dynamics simulations, receptor mutagenesis and pharmacological assays, to interrogate the mechanism and consequences of GLP-1R binding to four peptide agonists; glucagon-like peptide-1, oxyntomodulin, exendin-4 and exendin-P5. These data reveal that distinctions in peptide N-terminal interactions and dynamics with the GLP-1R transmembrane domain are reciprocally associated with differences in the allosteric coupling to G proteins. In particular, transient interactions with residues at the base of the binding cavity correlate with enhanced kinetics for G protein activation, providing a rationale for differences in G protein-mediated signalling efficacy from distinct agonists.


Subject(s)
Exenatide/chemistry , Glucagon-Like Peptide 1/chemistry , Glucagon-Like Peptide-1 Receptor/chemistry , Oxyntomodulin/chemistry , Allosteric Regulation , Baculoviridae/genetics , Baculoviridae/metabolism , Binding Sites , Cloning, Molecular , Cryoelectron Microscopy , Exenatide/genetics , Exenatide/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Glucagon-Like Peptide 1/genetics , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide-1 Receptor/genetics , Glucagon-Like Peptide-1 Receptor/metabolism , HEK293 Cells , Humans , Kinetics , Ligands , Molecular Dynamics Simulation , Mutation , Oxyntomodulin/genetics , Oxyntomodulin/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Structure-Activity Relationship
11.
Mol Psychiatry ; 27(1): 88-94, 2022 01.
Article in English | MEDLINE | ID: mdl-34376825

ABSTRACT

Current medications for schizophrenia typically modulate dopaminergic neurotransmission. While affecting positive symptoms, antipsychotic drugs have little clinical effect on negative symptoms and cognitive impairment. Moreover, newer 'atypical' antipsychotic drugs also have significant metabolic adverse-effects. The recent positive clinical trial of the novel drug candidate SEP-363856, which targets non-dopamine receptors (trace amine-associated receptor and the 5HT1A receptor), is a potentially promising development for the management of schizophrenia. In this perspective, we briefly overview the role of TAAR1 and the 5HT1A receptor in schizophrenia and explore the specific binding characteristics of SEP-363856 at these receptors. Molecular dynamics simulations (MDS) indicate that SEP-363856 interacts with a small, common set of conserved residues within the TAAR1 and 5HT1A ligand-binding domain. The primary interaction of SEP-363856 involves binding to the negatively charged aspartate residue (Asp1033.32, TAAR1; Asp1163.32, 5HT1A). In general, the binding of SEP-363856 within TAAR1 involves a greater number of aromatic contacts compared to 5HT1A. MDS provides important insights into the molecular basis of binding site interactions of SEP-363856 with TAAR1 and the 5HT1A receptor, which will be beneficial for understanding the pharmacological uniqueness of SEP-363856 and for the design of novel drug candidates for these newly targeted receptors in the treatment of schizophrenia and related disorders.


Subject(s)
Antipsychotic Agents , Schizophrenia , Antipsychotic Agents/pharmacology , Antipsychotic Agents/therapeutic use , Humans , Pyrans/therapeutic use , Receptors, G-Protein-Coupled/metabolism , Schizophrenia/drug therapy
12.
RNA ; 27(10): 1220-1240, 2021 10.
Article in English | MEDLINE | ID: mdl-34244459

ABSTRACT

Metabotropic glutamate receptor 4 (mGlu4) is one of eight mGlu receptors within the Class C G protein-coupled receptor superfamily. mGlu4 is primarily localized to the presynaptic membrane of neurons where it functions as an auto and heteroreceptor controlling synaptic release of neurotransmitter. mGlu4 is implicated in numerous disorders and is a promising drug target; however, more remains to be understood about its regulation and pharmacology. Using high-throughput sequencing, we have validated and quantified an adenosine-to-inosine (A-to-I) RNA editing event that converts glutamine 124 to arginine in mGlu4; additionally, we have identified a rare but novel K129R site. Using an in vitro editing assay, we then validated the pre-mRNA duplex that allows for editing by ADAR enzymes and predicted its conservation across the mammalian species. Structural modeling of the mGlu4 protein predicts the Q124R substitution to occur in the B helix of the receptor that is critical for receptor dimerization and activation. Interestingly, editing of a receptor homodimer does not disrupt G protein activation in response to the endogenous agonist, glutamate. Using an assay designed to specifically measure heterodimer populations at the surface, however, we found that Q124R substitution decreased the propensity of mGlu4 to heterodimerize with mGlu2 and mGlu7 Our study is the first to extensively describe the extent and regulatory factors of RNA editing of mGlu4 mRNA transcripts. In addition, we have proposed a novel functional consequence of this editing event that provides insights regarding its effects in vivo and expands the regulatory capacity for mGlu receptors.


Subject(s)
RNA Editing , RNA, Messenger/genetics , Receptors, Metabotropic Glutamate/genetics , Adenosine Deaminase/genetics , Adenosine Deaminase/metabolism , Amino Acid Sequence , Animals , Base Pairing , Base Sequence , Birds , Cerebral Cortex/cytology , Cerebral Cortex/metabolism , Corpus Striatum/cytology , Corpus Striatum/metabolism , HEK293 Cells , Hippocampus/cytology , Hippocampus/metabolism , Humans , Models, Molecular , Neurons/cytology , Neurons/metabolism , Nucleic Acid Conformation , Point Mutation , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , RNA, Messenger/chemistry , RNA, Messenger/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Rats , Rats, Sprague-Dawley , Receptors, Metabotropic Glutamate/chemistry , Receptors, Metabotropic Glutamate/metabolism , Reptiles , Sequence Homology, Amino Acid
13.
ChemMedChem ; 16(22): 3451-3462, 2021 11 19.
Article in English | MEDLINE | ID: mdl-34216111

ABSTRACT

The calcium-sensing receptor (CaSR) is a clinical target in the treatment of hyperparathyroidism and related diseases. However, clinical use of approved CaSR-targeting drugs such as cinacalcet is limited due to adverse side effects including hypocalcaemia, nausea and vomiting, and in some instances, a lack of efficacy. The CaSR agonist and positive allosteric modulator (ago-PAM), AC265347, is chemically distinct from clinically-approved CaSR PAMs. AC265347 potently suppressed parathyroid hormone (PTH) release in rats with a lower propensity to cause hypocalcaemia compared to cinacalcet and may therefore offer benefits over current CaSR PAMs. Here we report a structure activity relationship (SAR) study seeking to optimise AC265347 as a drug candidate and disclose the discovery of AC265347-like compounds with diverse pharmacology and improved physicochemical and drug-like properties.


Subject(s)
Receptors, Calcium-Sensing , Animals , Humans , Rats , Allosteric Regulation/drug effects , Models, Molecular , Molecular Structure , Receptors, Calcium-Sensing/agonists , Structure-Activity Relationship
15.
J Med Chem ; 64(12): 8161-8178, 2021 06 24.
Article in English | MEDLINE | ID: mdl-34120444

ABSTRACT

Adenosine receptors are attractive therapeutic targets for multiple conditions, including ischemia-reperfusion injury and neuropathic pain. Adenosine receptor drug discovery efforts would be facilitated by the development of appropriate tools to assist in target validation and direct receptor visualization in different native environments. We report the development of the first bifunctional (chemoreactive and clickable) ligands for the adenosine A1 receptor (A1R) and adenosine A3 receptor (A3R) based on an orthosteric antagonist xanthine-based scaffold and on an existing structure-activity relationship. Bifunctional ligands were functional antagonists with nanomolar affinity and irreversible binding at the A1R and A3R. In-depth pharmacological profiling of these bifunctional ligands showed moderate selectivity over A2A and A2B adenosine receptors. Once bound to the receptor, ligands were successfully "clicked" with a cyanine-5 fluorophore containing the complementary "click" partner, enabling receptor detection. These bifunctional ligands are expected to aid in the understanding of A1R and A3R localization and trafficking in native cells and living systems.


Subject(s)
Adenosine A1 Receptor Antagonists/pharmacology , Adenosine A3 Receptor Antagonists/pharmacology , Molecular Probes/pharmacology , Receptor, Adenosine A1/metabolism , Receptor, Adenosine A3/metabolism , Xanthines/pharmacology , Adenosine A1 Receptor Antagonists/chemical synthesis , Adenosine A3 Receptor Antagonists/chemical synthesis , Alkynes/chemistry , Animals , Azides/chemistry , CHO Cells , Click Chemistry , Cricetulus , Drug Design , Fluorescent Dyes/chemistry , Humans , Ligands , Molecular Probes/chemical synthesis , Receptor, Adenosine A1/chemistry , Receptor, Adenosine A3/chemistry , Xanthines/chemical synthesis
16.
ACS Pharmacol Transl Sci ; 4(2): 666-679, 2021 Apr 09.
Article in English | MEDLINE | ID: mdl-33860192

ABSTRACT

The CaSR is a class C G protein-coupled receptor (GPCR) that acts as a multimodal chemosensor to maintain diverse homeostatic functions. The CaSR is a clinical therapeutic target in hyperparathyroidism and has emerged as a putative target in several other diseases. These include hyper- and hypocalcaemia caused either by mutations in the CASR gene or in genes that regulate CaSR signaling and expression, and more recently in asthma. The development of CaSR-targeting drugs is complicated by the fact that the CaSR possesses many different binding sites for endogenous and exogenous agonists and allosteric modulators. Binding sites for endogenous and exogenous ligands are located throughout the large CaSR protein and are interconnected in ways that we do not yet fully understand. This review summarizes our current understanding of CaSR physiology, signaling, and structure and how the many different binding sites of the CaSR may be targeted to treat disease.

17.
Mol Pharmacol ; 99(5): 328-341, 2021 05.
Article in English | MEDLINE | ID: mdl-33602724

ABSTRACT

Positive allosteric modulation of metabotropic glutamate subtype 5 (mGlu5) receptor has emerged as a potential new therapeutic strategy for the treatment of schizophrenia and cognitive impairments. However, positive allosteric modulator (PAM) agonist activity has been associated with adverse side effects, and neurotoxicity has also been observed for pure PAMs. The structural and pharmacological basis of therapeutic versus adverse mGlu5 PAM in vivo effects remains unknown. Thus, gaining insights into the signaling fingerprints, as well as the binding kinetics of structurally diverse mGlu5 PAMs, may help in the rational design of compounds with desired properties. We assessed the binding and signaling profiles of N-methyl-5-(phenylethynyl)pyrimidin-2-amine (MPPA), 3-cyano-N-(2,5-diphenylpyrazol-3-yl)benzamide (CDPPB), and 1-[4-(4-chloro-2-fluoro-phenyl)piperazin-1-yl]-2-(4-pyridylmethoxy)ethenone [compound 2c, a close analog of 1-(4-(2-chloro-4-fluorophenyl)piperazin-1-yl)-2-(pyridin-4-ylmethoxy)ethanone] in human embryonic kidney 293A cells stably expressing mGlu5 using Ca2+ mobilization, inositol monophosphate (IP1) accumulation, extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation, and receptor internalization assays. Of the three allosteric ligands, only CDPPB had intrinsic agonist efficacy, and it also had the longest receptor residence time and highest affinity. MPPA was a biased PAM, showing higher positive cooperativity with orthosteric agonists in ERK1/2 phosphorylation and Ca2+ mobilization over IP1 accumulation and receptor internalization. In primary cortical neurons, all three PAMs showed stronger positive cooperativity with (S)-3,5-dihydroxyphenylglycine (DHPG) in Ca2+ mobilization over IP1 accumulation. Our characterization of three structurally diverse mGlu5 PAMs provides further molecular pharmacological insights and presents the first assessment of PAM-mediated mGlu5 internalization. SIGNIFICANCE STATEMENT: Enhancing metabotropic glutamate receptor subtype 5 (mGlu5) activity is a promising strategy to treat cognitive and positive symptoms in schizophrenia. It is increasingly evident that positive allosteric modulators (PAMs) of mGlu5 are not all equal in preclinical models; there remains a need to better understand the molecular pharmacological properties of mGlu5 PAMs. This study reports detailed characterization of the binding and functional pharmacological properties of mGlu5 PAMs and is the first study of the effects of mGlu5 PAMs on receptor internalization.


Subject(s)
Allosteric Regulation/drug effects , Receptor, Metabotropic Glutamate 5/metabolism , Signal Transduction/drug effects , Animals , Benzamides/pharmacology , Cell Line , Fatty Acids/pharmacology , Female , HEK293 Cells , Humans , MAP Kinase Signaling System/drug effects , Mice , Phosphorylation/drug effects , Pyrazoles/pharmacology , Rats
18.
Science ; 372(6538)2021 04 09.
Article in English | MEDLINE | ID: mdl-33602864

ABSTRACT

G protein-coupled receptors (GPCRs) are key regulators of information transmission between cells and organs. Despite this, we have only a limited understanding of the behavior of GPCRs in the apo state and the conformational changes upon agonist binding that lead to G protein recruitment and activation. We expressed and purified unmodified apo and peptide-bound calcitonin gene-related peptide (CGRP) receptors from insect cells to determine their cryo-electron microscopy (cryo-EM) structures, and we complemented these with analysis of protein conformational dynamics using hydrogen-deuterium exchange mass spectrometry and three-dimensional variance analysis of the cryo-EM data. Together with our previously published structure of the active, Gs-bound CGRP receptor complex, our work provides insight into the mechanisms of class B1 GPCR activation.


Subject(s)
Calcitonin Gene-Related Peptide/chemistry , Receptors, Calcitonin Gene-Related Peptide/chemistry , Receptors, Calcitonin Gene-Related Peptide/metabolism , Animals , Apoproteins/chemistry , Apoproteins/metabolism , Calcitonin Gene-Related Peptide/metabolism , Calcitonin Receptor-Like Protein/chemistry , Cell Line , Cell Membrane/metabolism , Cryoelectron Microscopy , GTP-Binding Protein alpha Subunits, Gs/chemistry , GTP-Binding Protein alpha Subunits, Gs/metabolism , Humans , Hydrogen Deuterium Exchange-Mass Spectrometry , Ligands , Models, Molecular , Moths , Protein Binding , Protein Conformation , Protein Interaction Domains and Motifs , Protein Structure, Secondary , Receptor Activity-Modifying Protein 1/chemistry , Receptor Activity-Modifying Protein 1/metabolism
19.
Pharmacol Rev ; 73(1): 521-569, 2021 01.
Article in English | MEDLINE | ID: mdl-33361406

ABSTRACT

Metabotropic glutamate (mGlu) receptors respond to glutamate, the major excitatory neurotransmitter in the mammalian brain, mediating a modulatory role that is critical for higher-order brain functions such as learning and memory. Since the first mGlu receptor was cloned in 1992, eight subtypes have been identified along with many isoforms and splice variants. The mGlu receptors are transmembrane-spanning proteins belonging to the class C G protein-coupled receptor family and represent attractive targets for a multitude of central nervous system disorders. Concerted drug discovery efforts over the past three decades have yielded a wealth of pharmacological tools including subtype-selective agents that competitively block or mimic the actions of glutamate or act allosterically via distinct sites to enhance or inhibit receptor activity. Herein, we review the physiologic and pathophysiological roles for individual mGlu receptor subtypes including the pleiotropic nature of intracellular signal transduction arising from each. We provide a comprehensive analysis of the in vitro and in vivo pharmacological properties of prototypical and commercially available orthosteric agonists and antagonists as well as allosteric modulators, including ligands that have entered clinical trials. Finally, we highlight emerging areas of research that hold promise to facilitate rational design of highly selective mGlu receptor-targeting therapeutics in the future. SIGNIFICANCE STATEMENT: The metabotropic glutamate receptors are attractive therapeutic targets for a range of psychiatric and neurological disorders. Over the past three decades, intense discovery efforts have yielded diverse pharmacological tools acting either competitively or allosterically, which have enabled dissection of fundamental biological process modulated by metabotropic glutamate receptors and established proof of concept for many therapeutic indications. We review metabotropic glutamate receptor molecular pharmacology and highlight emerging areas that are offering new avenues to selectively modulate neurotransmission.


Subject(s)
Biological Phenomena , Central Nervous System Diseases , Pharmacology, Clinical , Receptors, Metabotropic Glutamate , Animals , Humans , Signal Transduction
20.
Biochem Pharmacol ; 177: 114013, 2020 07.
Article in English | MEDLINE | ID: mdl-32389635

ABSTRACT

The metabotropic glutamate receptor 5 (mGlu5) is a promising therapeutic target for multiple CNS disorders. Recent mGlu5 drug discovery has focused on targeting binding sites within the mGlu5 7-transmembrane domain (7TM) that are topographically distinct from that of the endogenous ligand. mGlu5 primarily couples to Gq/11 proteins leading to mobilization of intracellular Ca2+ (iCa2+), but also activates iCa2+ independent signaling pathways, with biased agonism/modulation operative for multiple positive allosteric modulator (PAM) and PAM-agonist chemotypes. Although several residues within the common allosteric binding pocket are key determinants of PAM activity, how these residues affect biased modulation is unknown. The current study probed the molecular basis of mGlu5 PAM biased modulation. Modulation of mGlu5 activity by four chemically distinct mGlu5 PAMs (VU0424465, DPFE, VU29 and VU0409551) was assessed across two distinct receptor endpoints (iCa2+ mobilization and ERK1/2 phosphorylation) at mGlu5 receptors containing single-point mutations of allosteric binding pocket residues informed by computational modeling. Many mutations had differential effects on PAM affinity and cooperativity across signaling endpoints, resulting in gain or reversal of bias at the level of both affinity and functional cooperativity. Additionally, mutants had differential effects on functional cooperativity between the orthosteric ligands, DHPG and glutamate, and the PAMs, DPFE and VU29, but not VU0409551, indicating that probe dependence is linked to orthosteric agonists conferring activation states that differentially influence allosteric ligand-receptor interactions in a chemotype dependent fashion. Collectively, these data provide crucial insight into the residues that govern different activation states adopted by mGlu5 in order to signal via distinct intracellular pathways when co-bound by orthosteric agonists and PAMs.


Subject(s)
Receptor, Metabotropic Glutamate 5/chemistry , Receptor, Metabotropic Glutamate 5/genetics , Receptor, Metabotropic Glutamate 5/metabolism , Allosteric Regulation , Allosteric Site , Animals , Binding Sites , Calcium/metabolism , HEK293 Cells , Humans , Ligands , Methoxyhydroxyphenylglycol/analogs & derivatives , Methoxyhydroxyphenylglycol/pharmacology , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Models, Molecular , Molecular Docking Simulation , Mutation , Niacinamide/analogs & derivatives , Niacinamide/pharmacology , Oxazoles/pharmacology , Phosphorylation/drug effects , Piperazines/pharmacology , Pyridines/pharmacology , Rats , Receptor, Metabotropic Glutamate 5/agonists
SELECTION OF CITATIONS
SEARCH DETAIL
...